If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4k^2+4k=35
We move all terms to the left:
4k^2+4k-(35)=0
a = 4; b = 4; c = -35;
Δ = b2-4ac
Δ = 42-4·4·(-35)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-24}{2*4}=\frac{-28}{8} =-3+1/2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+24}{2*4}=\frac{20}{8} =2+1/2 $
| c+49/10=14 | | -2m^2+8m=-64 | | 31x=471.5 | | -500=-5(-13)+b | | 930=10(w+27) | | 468x=13x | | (14x-13)+(8x+11)=360 | | 31x=3565 | | -14=z+1 | | 574=14(f-924) | | 45x+55x-4=980 | | 13(y+22)=507 | | (14x-13)+(8x+11)=90 | | 420x=3780 | | 25x=3780 | | 1=3b−2 | | 9x-6=3x+42 | | -6-3/2x=x | | t+(5.8•1)=8.2 | | 1/2n+4n=12 | | -6-(3/2)x=x | | 12(r+28)=888 | | w-236/29=16 | | d+103/12=26 | | 551=29(q-960) | | 16x=3780 | | (3x+6)+(4x)=90 | | 12=0.25x+5.50 | | 2(m/4+1)=10 | | 26(k+7)=858 | | 2x-3=x+8=6x-5 | | 9x=3790 |